
CSE 221 Draft 2
Allison Turner (A59009879)

Alex Yen (A59002185)
Rukshani Athapathu (A59009507)

aturner@ucsd.edu
alyen@ucsd.edu

dathapathu@ucsd.edu

1 INTRODUCTION
The goal of this project is to understand the performance of
the underlying hardware and operating system of ’seed-e60-
119.ucsd.edu’ server that reside in San Diego Supercomputer
Center. This is a decade old server, ’ProLiant DL380 G6’ to
be exact, manufactured in 2009.

2 MACHINE DESCRIPTION
We report the followingmachine specifications and ourmeth-
ods for acquiring our machine specifications.

Processor: we recorded the following CPU and cache
information through the lscpu command:

Processor Model: Intel(R) Xeon(R) CPU, E5520
Cycle frequency: 2.27 GHz (0.44ns)
Cache sizes:

L1i: 32K
L1d: 32K
L2: 256K
L3: 8192K

DRAM: to record the type of DRAM, the clock speed, and
the capcity, we used the lshw command with the flags -short
-C memory:

Type: DIMM DDR3
Clock: 1333 MHz (0.8ns)
Capacity: 24453452 kB (24 GB)

We calculated the memory bus bandwidth with the
following information. DDR2, DDR3, and DDR4 are 64 bits
wide. Our machine has 12 memory channels. We also assume
that our data rate is 1 bit per cycle (we are not sure if this
could be found on our machine). As a result, our machine’s
memory bus bandwidth is calculated as follows:

Memory Bus Bandwidth: 1333MHz * 12 channels * 64 bits
/ 8 bits = 128 GB/s

We determine our I/O bus type and bandwidth through
the following command: sudo dmidecode | grep "PCI". Our
machine only tells us "PCI Express," so we assume that our

version over PCI Express is PCIe 1.0. We found that we have
4 I/O bus slots, so our total bandwidth is as calculated:

Bandwidth = 250MB/s * 4 = 1GB/s (or 8 Gbps)

For permanent storage, we first determine that our ma-
chine uses three hard drives through the lsblk command. We
also determine the model specifically through the lshw com-
mand with -class disk flag. For each of the hard drives, we use
the hdparm command with -t /dev/[disk name] flags, where
[disk name] is replaced with each hard drive name (which is
sda, sdb, and sdc in our scenario) – this is to determine the
disk latency. Finally, we calculate latency through the disk
RPM, which is calculated by 1/(𝑅𝑃𝑀/60𝑠).

First Disk (sda):
Model: SCSI
Capacity: 465GB
RPM: 15,000
Transfer Rates: 157.80 MB/s
Latencies: 2ms

Second Disk:
Model: SCSI
Capacity: 1.8TB
RPM: 15,000
Transfer Rates: 384.89 MB/s
Latencies: 2ms

Third Disk:
Model: SCSI
Capacity: 2.8TB
RPM: 15,000
Transfer Rates: 525.95 MB/s
Latencies: 2ms

We calculate the network card bandwidth through the
ethtool command.

Network card bandwidth: 10,000MB/s

Lastly, we determine the operating system and version
through cat /etc/os-release

1

CSE 221, February 17, 2022, UCSD Turner, Yen, Athapathu

Operating System: CentOS Linux 8

3 METHODOLOGY
We wrote most of the code for our tests in C, in order to
balance the desire for low-level testing with a need to avoid
over-optimization of code. GCC version we use to compile
our code is 8.5.0 20210514 (Red Hat 8.5.0-4) (GCC). We did
not employ any optimizations for the compilation.
We use ’taskset’ command to bond our processes to a

single cpu on the system to get accurate measurements. We
also set our process priority to -20 to give our process the
highest priority.

To measure the CPU operations we use cycle counts. This
choice was most important for capturing CPU operations
with very short compute times. Therefore to get accurate
timing measurements it is vital that we use a low overhead
mechanism. The machine under test has an Intel(R) Xeon(R)
CPU and has support for RDTSCP assembly instruction. We
referred Intel’s white paper [4] to develop our CPU bench-
marking tests with RDTSCP assembly instructions.
We also checked to make sure that the CPUs of the ma-

chine under test has "constant_tsc" flag so that the the cycle
counter updates at a fixed frequency independent of the
operating frequency of the CPU.

3.1 Measuring Cycle Time
We compute the cycle time by counting the number of cycles
in a known time interval as mentioned in [5]. Seed server
reports the following frequencies.

• model name : Intel(R) Xeon(R) CPU E5520 @ 2.27GHz
• cpu MHz : 1654.168

Cycle counts for a 10 second known time interval is as
follows.
Cycle Count: 22667474081
Cycle Count: 22667467275
Cycle Count: 22667477505
Cycle Count: 22667468036
Cycle Count: 22667487880
Cycle Count: 22667474574
Cycle Count: 22667464493
Cycle Count: 22667461916
Cycle Count: 22667476230
Cycle Count: 22667479232
Samples: 10
Mean: 22667473122
sd: 7796.8504

This indicates that the CPU frequency is 2.27GHz and not
1654.168MHz. Therefore, we can conclude that one cycle
takes 0.44ns.

Figure 1: Loop overhead for different numbers of itera-
tions

4 CPU, SCHEDULING AND OS SERVICES
For all CPU operations we took ten samples each running
thousand iterations and computed the mean and the standard
deviation. The standard deviation is measured across these
ten trials.

4.1 Measurement Overhead
We predicted the timing overhead to be 4 cycles for each read
so altogether 8 cycles. The actual measurement revealed it to
be 44 cycles. The standard deviation among the ten samples
is 3.439961.
After measuring the timing overhead we predicted the

looping overhead for just one item to be 264 cycles ((44
* 5) + 44). That turned out to be wrong again. ’for’ loop
with one iteration only took 45 cycles same amount as the
timing overhead. Based on that result then we predicted the
iterations with 10, 100, 1000, 10000 to take roughly 45, 50,
70, 100 cycles. We found ourselves to be far off once again.
It took 45, 96, 705, 6554 and 64855 cycle counts for 1, 10, 100,
1000, 10000 iterations. Standard deviation turned out to be
2.750207, 4.376706, 11.499275, 158.636552, and 610.22372 for
1, 10, 100, 1000, 10000 iterations respectively among the ten
trials. Figure 1 shows the actual cycle counts with different
numbers of iterations.

4.2 Procedure Call Overhead
Our estimation for a procedure with no arguments was 45
cycles based on the experience from the for loop with just
one iteration. Then we predicted that each argument would
take 10 cycles each. That is, a procedure with 1-7 integer
argumentwould take 65, 75, 85, 95, 105, 115, 125 cycles respec-
tively. We were wrong again. Cycle counts did not increase
steadily with parameter count. There is roughly a 10 cycles
difference between no parameters and 7 parameters. These

2

CSE 221 Draft 2 CSE 221, February 17, 2022, UCSD

Figure 2: Procedure overhead for different numbers of
integer parameters

numbers are from the ten trials we did each with a thousand
iterations. The standard deviation among the ten trails for
each function varied between 0-15. We repeated this three
times to make sure we are getting consistent results. But
unfortunately, we do not see a clear pattern between cycle
count and the number of parameters for procedure overhead.
Figure 2 shows the actual results of these three tries.

4.3 System Call Overhead
To measure system calls, we wrote functions to time, in clock
cycles a sample of system calls via their C library functions.
The system calls that we measure in this manner thus far
include:

• fork - average 158,322 clock cycles
• exit - average 1.94363E+16 clock cycles
• kill - average 21,468 clock cycles
• open file in read mode - average 14,871 clock cycles
• open file in write mode - average 525,008 clock cycles
• close file - average 4,743 clock cycles
• sleep(0) - average 134,018 clock cycles
• getpid - average 3,903 clock cycles

Overall, it seems that "cheap" system calls, such as kill or
close, take between 3,000 and 5,000 cycles, while average
calls take a few hundred thousand cycles, and an outlier like
exit takes trillions.

We added kill to this list as a comparison point to exit. Exit
has a surprisingly high duration every time we measured
it, no matter how we refactored our code. We hypothesized
that perhaps the self-directed cleanup procedures of exit
were taking up so much time, and that ending a process with
SIGKILL would be much faster. The measurements from our
kill test confirm this, with its average being a tiny fraction
of exit’s.

The sleep test is the only measurement that takes a param-
eter. We thought it would be interesting to have the ability to
compare overhead time for different requested sleep times,
and to also account for how accurately the requested dura-
tion was fulfilled. At the moment, we have only obtained
an average for sleep(0), but will be iterating on the depth of
analysis.

4.4 Task Creation Time
We can compare the time required to create a process vs a
thread by comparing the cycle-time measurements of fork
and pthread_create. pthread_create took an average of 131,758
clock cycles, ranging from 107,848 cycles to 154,719 cycles.
fork took an average of 158,322 clock cycles, ranging from
135,204 cycles to 286,928 cycles. We can see, as expected, that
threads are faster to create, although the margin by which it
is faster is relatively smaller than expected.

4.5 Context Switch Time
To measure the context switch time between processes, we
use blocking pipes. Our test is such that the parent process
writing from the pipe and the child process reading from the
pipe. We record the start time right after we write to the pipe
in the parent process and record the end time just before the
child reads from the pipe. Our initial results show that we
have an average of 207,570 cycles for context switching with
a standard deviation of 27,940 cycles. We would like some
feedback with regard to this section as we are not entirely
sure whether the way we have conducted this test is correct.

We also use pipes to measure thread context switches. One
thread is blocked as it tries to read from the other, and so
there is a context switch into the writing thread and a con-
text switch back to the reading thread. This test still needs
some tweaking, as output from rusage shows 6-8 voluntary
context switches, even when running with a nice value of
0. In its current state, this test shows context switch times
ranging between 81,558 clock cycles and 188,379 clock cycles,
with an average of 103,520 clock cycles. The wide variation in
measurements for this test confirms that we need to improve
it significantly. One known issue is that the time range mea-
sured includes the read and write pipe operations between
the two threads, since the read and write pipe operations are
how we trigger a context switch. Barring a technical rework
of the code, we can factor in a measured overhead for pipe
operations, as Bendersky does in [1]

5 MEMORY
5.1 RAM Access Time
To measure the latency of our caches and memory, we create
a linked list of about two million nodes and first populate
the caches and memory by unrolling each next node access.

3

CSE 221, February 17, 2022, UCSD Turner, Yen, Athapathu

Figure 3: Raw Accessing Caches and Main Memory

Figure 4: AccessingCaches andMainMemory (Filtered)

Then, to access the cache and memory according to the
most recently access memory, we traverse the linked list in
reverse order. We note that something is still wrong with our
implementation – in Figure 3, we observe entries and access
times that have very high cycles which are not reflective
of the cache nor memory access times; we are unsure of
why these are present and will fix this issue for the final
submission. We thus try to filter out some of these high cycle
entries by only recording access times that were less than
2000 cycles, though this also does not seems to give clean
results, although the access times are a bit clearer through
this in Figure 4.
We double check our work based from our machine’s

cache sizes, and we do not think the numbers line up. On
our graph, we should see a change in latency at around 223

Figure 5: Testing Memory Bandwidth with bcopy

Figure 6: Testing Memory Bandwidth with an Unrolled
Accumulator Loop

bytes, though I believe our results are showing around 219
bytes instead. We have double checked what the memory
latency should be, and we believe it is around 120ns.

5.2 RAM Bandwidth
After referencing [3] and [2], we implemented memory band-
width tests using bcopy and loop unrolling. For the bcopy test,
we allocated two page-aligned chunks of memory, "warmed"
the cache by zeroing out both regions, and then bcopy-ed
the contents of one allocated memory region to the other.
For the loop-unrolling test, we defined macros that would

4

CSE 221 Draft 2 CSE 221, February 17, 2022, UCSD

increment through a region of memory and add each ele-
ment. Each test was executed several times, on a range of
memory region sizes from 1 byte to more than two pages’
worth of bytes.We compiled with no optimizations, using the
’-O0’ flag, and ran the executable on a single core with high
user-level priority, using ’sudo nice -n -20 taskset –cpu-list 1
./memory_measurement’

bcopy and loop unrolling yielded very different ranges of
bandwidth rate, however both produced very strong trend-
lines: bcopy shows a power-series-type trend with a band-
width rate ceiling around 27 bytes per ns, and loop unrolling
shows a logarithmic-type trend with a ceiling around 2.75
bytes per ns. Loop unrolling also shows some smaller trend-
lines underneath the upper-bound of the logarithmic trend-
line; these could perhaps show test iterations subject to cache
evictions, page faults, or similar.
Since our results differ so much between our two tests,

we still have some refinement to perform on our code. Loop
unrolling has likely had its timings falsely inflated, since
the method for iterating through an arbitrarily large region
of memory involves checks and management variables that
could be using up cycle time instead of memory operations.
[3] and [2] permitted the slight inflation of the cycle mea-
surements from addition operations, but conditionals and
other variables are perhaps more weighty in consideration.

5.3 Page Fault Service Time
’getconf PAGESIZE’ command reveals the page size of the
seed server to be of 4096 bytes. We have created a file with

the size of 4096 bytes and used mmap system call to map
that file into memory. ’mmap’ system call triggers a page
fault and we verified it with ’ps -o min_flt,maj_flt’ command.
Our measurements reveal the page fault service time to be
1328278ns (0.00133 seconds).

REFERENCES
[1] Eli Bendersky. 2018. Measuring context switching and mem-

ory overheads for Linux threads. (September 2018). Re-
trieved February 1 2022 from https://eli.thegreenplace.net/2018/
measuring-context-switching-and-memory-overheads-for-linux-threads/

[2] Aaron B. Brown and Margo I. Seltzer. 1997. Operating System Bench-
marking in the Wake of <i>Lmbench</i>: A Case Study of the Perfor-
mance of NetBSD on the Intel X86 Architecture. SIGMETRICS Perform.
Eval. Rev. 25, 1 (jun 1997), 214–224. https://doi.org/10.1145/258623.
258690

[3] Larry McVoy and Carl Staelin. 1996. lmbench: Portable Tools for
Performance Analysis. In USENIX 1996 Annual Technical Conference
(USENIX ATC 96). USENIX Association, San Diego, CA. https://www.
usenix.org/conference/usenix-1996-annual-technical-conference/
lmbench-portable-tools-performance-analysis

[4] Gabriele Paoloni. 2010. How to Benchmark Code Execution
Times on Intel® IA-32 and IA-64 Instruction Set Architectures.
https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf.
(2010).

[5] Geoff Volker. [n. d.]. Measuring Time. https://cseweb.ucsd.edu/classes/
wi22/cse221-a/timing.html. ([n. d.]).

5

https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://doi.org/10.1145/258623.258690
https://doi.org/10.1145/258623.258690
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/lmbench-portable-tools-performance-analysis
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/lmbench-portable-tools-performance-analysis
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/lmbench-portable-tools-performance-analysis
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://cseweb.ucsd.edu/classes/wi22/cse221-a/timing.html
https://cseweb.ucsd.edu/classes/wi22/cse221-a/timing.html

	1 Introduction
	2 Machine Description
	3 Methodology
	3.1 Measuring Cycle Time

	4 CPU, Scheduling and OS Services
	4.1 Measurement Overhead
	4.2 Procedure Call Overhead
	4.3 System Call Overhead
	4.4 Task Creation Time
	4.5 Context Switch Time

	5 Memory
	5.1 RAM Access Time
	5.2 RAM Bandwidth
	5.3 Page Fault Service Time

	References

